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1.3 The complex refractive index and dielectric constant 5 

Example 1.1 
The reflectivity of silicon at 633 nm is 35% and the absorption coefficient is 
3.8 x 105 m- I . Calculate the transmission and optical density of a sample with 
a thickness of 10 /..Lm. 

Solution 

The transmission is given by eqn 1.6 with R = 0.35 and al = (3.8 x 105) x 
(10 x 10-6) = 3.8. This gives: 

T = (1 - 0.35)2 . exp( -3.8) = 0.0095 . 

The optical density is given by eqn 1.8: 

D.D. = 0.434 x 3.8 = 1.65 . 

1.3 The complex refractive index and dielectric 
constant 

In the previous section we mentioned that the absorption and refraction of a 
medium can be described by a single quantity called the complex refractive 
index. This is usually given the symbol ii and is defined through the equation: 

ii = n + iK. (1.11) 

The real part of ii, namely n, is the same as the nonnal refractive index defined 
in eqn. 1.2. The imaginary part of ii, namely K, is called the extinction coeffi-
cient. As we will sec below, K is directly related to the absorption coefficient a 
of the medium. 

The relationship between a and K can be derived by considering the prop-
agation of plane electromagnetic waves through a medium with a complex 
refractive index. If the wave is propagating in the z direction, the spatial and 
time dependence of the electric field is given by (see eqn A.32 in Appendix A): 

8(z, t) = 8oei (kz-wt), (1.12) 

where k is the wave vector of the light and U) is the angular frequency. 1801 
is the amplitude at z = O. In a non-absorbing medium of refractive index n, 
the wavelength of the light is reduced by a factor n compared to the free space 
wavelength A. k and U) are therefore related to each other through: 

271: nU) 

k = (Aln) = -;-. (1.13) 

This can be generalized to the case of an absorbing medium by allowing the 
refractive index to be complex: 

U) (J) 
k=ii-=(n+iK)-, (1.14) 

c c 
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6 Introduction 

On substituting eqn 1.14 into eqn 1.12, we obtain: 

8(z, t) = 80 ei«vJiz/c--wt) 

= 80 e-KillZ / C ei(UmZ/C-illt) • ( 1.15) 

This shows that a non-zero extinction coefficient leads to an exponential decay 
of the wave in the medium. At the same time, the real part of Ii still deter-
mines the phase velocity of the wave front, as in the standard definition of the 
refractive index given in eqn 1.2. 

The optical intensity of a light wave is proportional to the square of the 
electric field, namely I ex 88* (c.f. eqn A.40). We can therefore deduce [rom 
eqn 1.15 that the intensity falls off exponentially in the medium with a decay 
constant equal to 2 x (nv/ c). On comparing this to Beer's law given in eqn 1.4 
we conclude that: 

2KW 4JTK 
c A 0.16) 

where ), is the free space wavelength of the light. This shows us that K is 
directly proportional to the absorption coefficient. 

We can relate the refractive index of a medium to its relative dielectric 
constant E'r by using the standard result derived from Maxwell's equations (cf. 
eqn A.31 in Appendix A): 

n = Fr. ( 1.17) 

This shows us that if 11 is complex, then Er must also be complex. We therefore 
define the complex relative dielectric constant Er according to: 

(1.18) 

By analogy with eqn 1.17, we see that Ii and Er are related to each other 
through: 

-2 -n = Er (l.19) 

We can now work out explicit relationships between the real and imaginary 
parts of Ii and Er by combining eqns 1.11, 1.18 and 1.19. These are: 

and 

E] = n2 K2 

E2 = 2nK , 

( 1.20) 
(1.21 ) 

(1.22) 

(1.23) 

This analysis shows us that ii and Er are not independent variables: if we know 
Eland E2 we can calculate nand K, and vice versa. Note that if the medium 
is only weakly absorbing, then we .can assume that K is very small, so that 
eqns 1.22 and 1.23 simplify to: 

n=,JEi 
E2 

K=-. 
2n 

(l.24) 

( 1.25) 
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1.3 The complex refractive index and dielectric constant 7 

These equations show us tbat the refractive index is basically determined by the 
real part of the dielectric constant, while the absorption is mainly determined 
by the imaginary part. This generalization is obviously not valid if the medium 
has a very large absorption coefficient. 

The microscopic models that we will be developing t1u'oughout the book 
usually enable us to calculate Er rather than ;1. The measurable optical proper-
ties can then be obtained by converting Eland E2 to n and K through eqns 1.22 
and 1.23. The refractive index is given directly by n, while the absorption 
coefficient can be worked out from K using eqn 1.16. The reflectivity depends 
on both nand K and is given by 

R = I ii - 112 _ (n - 1)2 + K2 . (1.26) 
Ii + I (n + 1)2 + K2 

This formula is derived in eqn A.50. It gives the coefficient of reflection be-
tween the medium and the air (or vacuum) at normal incidence. 

In a transparent material such as glass in the visible region of the spectrum, 
the absorption coefficient is very small. Equations 1.16 and 1.2] then tell us 
that K and E2 are negligible, and hence that both Ii and Er may be taken as real 
numbers. This is why tables of the properties of transparent optical materials 
generally list only the real parts of the refractive index and dielectric constant. 
On the other hand, if there is significant absorption, then we will need to know 
both the real and imaginary parts of Ii and Er . 

In the remainder of this book we will take it as explicitly assumed that both 
the refractive index and the dielectric constant are complex quantities. We will 
therefore drop the tilde notation on nand Er from now on, except where it 
is explicitly needed to avoid ambiguity. It will usually be obvious from the 
context whether we are dealing with real or complex quantities. 

Example 1.2 
The complex refractive index of germanium at 400 nm is given by Ii = 
4.141 + i 2.215. Calculate for germanium at 400 nm: (a) the phase velocity of 
light, (b) the absorption coefficient, and (c) the reflectivity. 

Solution 

(a) The velocity of light is given by eqn 1.2, where n is the real part of n. Hence 
we obtain: 

c 2.998 X 108 
V = - = ms- I = 7.24 x 107 ms- I . 

n 4.141 
(b) The absorption coefficient is given by eqn 1.16. By inserting K = 2.215 
and A = 400 nm, we obtain: 

4n x 2.215 
Q' = m- I = 6.96 x 107 m- I . 

400 x 10-9 

(c) The reflectivity is given by eqn 1.26. Inserting n = 4.141 and K = 2.215 
into this, we obtain: 

(4.141 - 1)2 + 2.2152 
R = - =47.1 %. 

(4.141 + 1)2 + 2.2152 
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12 Introduction 

Table 1.4 Composition, refractive index and ultraviolet transmission of common glasses. The letters after the names give the abbreviations used to 
identify the glass type. The composition figures are the percentage by mass. The refractive index is measured at 546.1 nm, and the transmission is 
for a I em plate at 310 nm. After [I], [4]. 

Name Si02 B2 0 3 A1203 Na20 K20 CaO BaO PbO P20S 11 T 

Fused silica 100 1.460 0.91 
Crown (K) 74 9 II 6 1.513 0.4 
Borosilicate crown (BK) 70 10 8 8 3 1.519 0.35 
Phosphate crown (PK) 3 10 12 5 70 1.527 0.46 
Light flint (I .F) 53 5 8 34 1.585 0.008 
Flint (F) 47 2 7 44 1.607 
Dense flint (SF) 33 5 62 1.746 

infrared visible uv 
1.0 

0.8 .c 
0.6 u silver 

<i) 
r;::: 0.4 

0.2 

0.0 
10 1.0 0.1 

Fig. 1.5 Reflectivity of silver from the in-
frared to the ultraviolet. After [4]. Wavelength (J..lm) 

1.4.3 Metals 

The characteristic optical feature of metals is that they are shiny. This is why 
metals like silver and aluminium have been used for making mirrors for cen-
turies. The shiny appearance is a consequence of their very high reflection 
coefficients. We will see in Chapter 7 that the high reflectivity is caused by the 
interaction of the light with the free electrons that are present in the metal. 

Figure 1.5 shows the reflectivity of silver from the infrared spectral region 
to the ultraviolet. We see that the reflectivity is very close to 100 % in the 
infrared, and stays above 80 % throughout the whole visible spectral region. 
The reflectivity then drops sharply in the ultraviolet. This general behaviour 
is observed in all metals. There is strong reflection for all frequencies below 
a characteristic cut-off frequency called the plasma frequency. The plasma 
frequency corresponds to a wavelength in the ultraviolet spectral region, and so 
metals reflect infrared and visible wavelengths, but transmit ultraviolet wave-
lengths. This effect is called the ultraviolet transmission of metals. 

Some metals have characteristic colours. Copper, for example, has a pinkish 
colour, while gold is yellowish. These colours are caused by interband elec-
tronic transitions that occur in addition to the free carrier effects that cause the 
reflection. This point will be explained in Section 7.3.2 of Chapter 7. 

Larry


Larry




a greater electron affinity than hydrogen, and so the valence electrons in the 
O-H bond sit closer to the oxygen atoms. The two hydrogen atoms therefore 
possess a small positive charge which is balanced by a negative charge of twice 
the magnitude on the oxygen atom. 

In a crystalline solid formed from the condensation of polar molecules, the 
atoms are arranged in an alternating sequence of positive and negative ions. 
The ions can vibrate about their equilihrium positions, and this produces oscil-
lating dipole waves. These oscillations are associated with lattice vibrations, 
and they occur at frequencies in the infrared spectral region. We will consider 
the optical properties related to the lattice vibrations in detail in Chapter 10. We 
will see there that the light-matter interaction is associated with the excitation 
of phonons, which are quantized lattice waves. At this stage, we simply note 
that the lattice vibrations of a polar crystal give rise to strong optical effects 
in the infrared spectral region. These effects occur in addition to those due to 
the bound electrons of the atoms that comprise the crystal. In practice we can 
treat these two types of dipoles separately because the resonances are sharp 
and they occur at very different frequencies. Therefore the resonant effects of 
the bound electrons are negligible at the frequencies of the lattice vibrations, 
and vice versa. This point will be considered in more detail in Section 2.2.2. 

2.1.3 Free electron oscillators 

The electronic and vibrational dipoles considered above are both examples 
of bound oscillators. Metals and doped semiconductors, by contrast, contain 
significant numbers of free electrons. As the name implies, these are electrons 
that are not bound to any atoms, and therefore do not experience any restoring 
forces when they are displaced. This implies that the spring constant in eqn 2.2 
is zero, and hence that the natural resonant frequency cuo = O. 

The free electron model of metals is attributed to Paul Drude, and so the 
application of the dipole oscillator model to free electron systems is generally 
called the Drude-Lorentz model. The dipole oscillator model is perfectly valid. 
except that we must set {l)O = 0 throughout. The optical properties of free 
electron systems will be discussed in Chapter 7. 

2.2 The dipole oscillator model 
In the previous section we introduced the general assumptions of the dipole 
oscillator model. We now want to use the model to calculate the frequency 
dependence of the rcfractive index and absorption coefficient. This will pro-
vide a simple explanation for the dispersion of the refractive index in optical 
materials, and will also illustrate a very general point that the phenomena of 
absorption and refraction are related to each other. 

2.2.1 The Lorentz oscillator 
We consider the interaction between a light wave and an atom with a single 
resonant frequency {l)O due to the bound electrons, as given by eqn 2.2. We 

2.2 The dipole oscillator model 29 
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30 Classical propagation 

We know from experimental observations 
that atoms must have many natural resonant 
frequencies to account for the multiplicity of 
lines in the absorption and emission spectra. 
However, the salient features of the physical 
behaviour are well illustrated by a singly 
resonant system, and the inclusion of mul-
tiple resonances complicates the discussion 
without adding much to the physical under-
standing at this stage. We therefore postpone 
the discussion of the effects of multiple reso-
nances to subsection 2.2.2 below. 

Note that the phase factors <I> and <1>' in 
eqns 2.6 and 2.7 are not necessarily the same. 
In fact, the phase of the electrons will tend 
to lag behind the phase of the light. This is 
a well known property of forced oscillations: 
the vibrations occur at the same frequency as 
the driving force but lag behind due to the 
damping term. This phase lag is thc origin of 
the slowing down of the light in the optical 
medium, as discussed above in Section 2.1. 

model the displacement of the atomic dipoles as damped harmonic oscillators. 
The inclusion of damping is a consequence of the fact that the oscillating 
dipoles can lose their energy by collisional processes. In solids, this would 
typically occur through an interaction with a phonon which has been thermally 
excited in the crystal. As we will see, the damping term has the effect of 
reducing the peak absorption coefficient and broadening the absorption line. 

The electric field of the light wave induces forced oscillations of the atomic 
dipole through the driving forces exerted on the electrons. We make the as-
sumption that mN » mo here so that we can ignore the motion of the nucleus. 
The displacement x of the electron is governed by an equation of motion of the 
form: 

d2x dx 2 
mO--2 + moy - + mowox = -eS , 

dt dt 
(2.5) 

where y is the damping rate, e is the magnitude of the electric charge of the 
electron, and S is the electric field of the light wave. The terms on the left hand 
side represent the acceleration, the damping and the restoring force respec-
tively. The damping is modelled by a frictional force which is proportional to 
the velocity and impedes the motion. The term on the right hand side represents 
the driving force due to the AC electric field of the light wave. 

We consider the interaction of the atom with a monochromatic light wave of 
angular frequency w. The time dependence of the electric field is given by 

Set) = Socos(wt + <p) = Soffie (eXP(-iwt - <P)), (2.6) 

where So is the amplitude and <P is the phase of the light. In order to keep 
consistency with the sign convention introduced later, we have chosen to take 
the negative frequency part of the complex exponential. 

The AC electric field will drive oscillations at its own frequency w. We 
therefore substitute eqn 2.6 into eqn 2.5 and look for solutions of the form: 

x(t) = Xo ffie ( exp (-iwt - <P')) , (2.7) 

where Xo and <p' are the amplitude and phase of the oscillations. We can in-
corporate the phase factors of eqns 2.6 and 2.7 into the amplitudes by allowing 
both So and Xo to be complex numbers. We then substitute S(t) = Soe- iwt 

into eqn 2.5, and look for solutions of the formx(t) = Xoe- iwt . This gives: 

which implies that: 
-eSo/mo 

Xo = . w5 - w2 - iycv 
(2.9) 

The displacement of the electrons from their equilibrium position produces 
a time varying dipole moment pet), as shown in Fig. 2.2. The magnitude 
of the dipole is given by eqn 2.4. This gives a resonant contribution to the 
macroscopic polarization (dipole moment per unit volume) of the medium. If 
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N is the number of atoms per unit volume, the resonant polarization is given 
by: 

Presonant = N P 
=-Nex 

Ne2 1 
=- E. 

mo (w6 - w2 - iyw) 
(2.10) 

A quick inspection of eqn 2.10 shows that the magnitude of Presonant is small 
unless the frequency is close to woo This is another general property of forced 
oscillations: the response is small unless the frequency is close to resonance 
with the natural frequency of the oscillator. 

Equation 2.10 can be used to obtain the complex relative dielectric constant 
Er. The electric displacement D of the medium is related to the electric field 
8 and polarization P through: 

D = E08 +P, (2.11) 

where the bold font indicates vector quantities (see eqn A.2 in Appendix A). 
We are interested in the optical response at frequencies close to wo, and so 
we split the polarization into a non-resonant background term and the resonant 
term arising from the driven response of the oscillator. We therefore write: 

D = E08 + Pbackground + Presonant 

= E08 + EoX8 + Presonant. (2.12) 

To simplify the mathematics, we will assume that the material is isotropic, in 
which case the relative dielectric constant is defined through the relationship: 

(2.13) 

We then combine eqns 2.10-2.13 to obtain: 

Ne2 1 

2.2 The dipole oscillator model 31 

The electric susceptibility X in eqn 2.12 
accounts for all other contributions to the 
polarizability of the atoms. We will discuss 
the physical meaning of the 'non-resonant 
polarization' in subsection 2.2.2 below. 

The treatment of non-isotropic materials only 
introduces unnecessary complications at this 
stage, and will be covered briefly in Sec-

Er ((l») = 1 + X + -- ( 2 
Eomo Wo - w2 iY(J!) . 

(2.14) tion 2.4. 

This can be spilt into its real and imaginary parts according to eqn 1.18 to give: 

Ne2 w2 - w2 
El(W) = 1 + X + -- _---:::-_"'-0 ___ _ 

Eomo (w6 - ( 2)2 + (yw)2 
(2.15) 

Ne2 yw 
E2(W) = -- . 

Eomo (w6 - ( 2)2 + (yw)2 
(2.16) 

These fonnulae can be simplified further if we are working at frequencies close 
to resonance, where (1) :::::; (00 » y. This allows us to approximate (w6 - ( 2) 
by where = (w - wo) is the detuning from WOo We then notice 
that the low and high frequency limits of Er(W) are given by 

Ne 2 
Er(O) == Est = 1 + X + 2 ' 

Eomowo 
(2.17) 
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32 Classical propagation 

Fig. 2.4 Frequency dependence of the real 
and imaginary parts of the complex dielecttic 
constant of a dipole oscillator at frequencies 
close to resonance. The graphs are calcu-
lated for an oscillator with Wo = 1014 rad/s, 
y 5X 1012 S-I, Est = 12.l and Eoo = 10. Also 
shown is the real and imaginary part of the 
refractive index calculated from the dielec-
tric constant. 
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and 
Er(OO) == Eoo = 1 + X (2.18) 

respectively. The subscript on Est stands for 'static', since it represents the 
dielectric response to static electric fields. With this notation we find that: 

Ne2 
(Est - Eoo) = 2 . 

Eomowo 
(2.19) 

We finally rewrite eqns 2.15 and 2.16 in the following form valid at frequencies 
close to resonance: 

EI (llw) = Eoo 
2wollw 

(Est - Eoo) 4(llw)2 + y2 ' (2.20) 

ywo 
Eoo) 4(llw)2 + y2 . (2.21) 

These equations describe a sharp atomic absorption line centred at wo with full 
width at half maximum eoual to v. 

Figure 2.4 shows the frequency dependence of EI and E2 predicted by 
eqns 2.20-2.21 for an oscillator with Wo = 1014 rad/s, 'Y = 5 X 1012 S - j, 

Est = 12.1 and Eoo = 10. These numbers are fairly typical of the infrared 
absorption lines in an ionic crystal. We see that E2 is a strongly peaked function 
of w with a maximum value at Wo and a full width at half maximum equal to 
y. The frequency dependence of E] is more complicated. As we approach Wo 
from below, E] gradually rises from the low frequency value of Est, and reaches 
a peak at Wo - 'Y/2. (See Example 2.1.) It then falls sharply, passing through a 
minimum at Wo + y/2 before rising again to the high frequency limit of Eoo. 

Note that the frequency scale over which these effects occur is determined 
by 'Y for both E] and E2' This shows that the damping of the oscillator causes 
line broadening. The frequency dependence determined of E] and E2 shown in 
Fig. 2.4 is called Lorentzian after the originator of the dipole model. 

In an experiment we actually measure the refractive index n and the ab-
sorption coefficient a. The measurement of a then determines the extinction 

Larry




coefficient K through eqn 1.16. Figure 2.4 shows the values of nand K calcu-
lated from El and E2 using eqns 1.22 and 1.23. We sec that n approximately 
follows the frequency dependence of ../El(W), while K more or less follows 
E2(W). The correspondence n ++ .jEl and K ++ E2 would be exact if K were 
much smaller than n (cf. eqns 1.24 and 1.25). This is what generally happens 
in gases in which the low density of atoms makes the total absorption small. 
In the example shown in Fig. 2.4 the correspondence is only approximate 
because the absorption is very strong near WO, so that we cannot always assume 
n » K. Nevertheless, the basic behaviour shows that the absorption peaks at 
a frequency very close to WO and has a width of about y, while the refractive 
index shows positive and negative excursions below and above wo. This is the 
typical behaviour expected of an atomic absorption line. 

One interesting aspect of the Lorentz oscillator is that it affects the re-
fractive index over a much larger frequency range than the absorption. This 
point is clearly shown in the graphs given in Fig. 2.4. The absorption is a 
strongly peaked function of wand falls off as as we tune away from 
resonance. Thus there is no significant absorption if we tune sufficiently far 
from resonance. On the other hand, the frequency dependence of the refractive 
index varies as for large This follows from eqn 2.20 with the 
approximation n = .jEl, which is valid for large when E2 is very small. 

Example 2.1 
The full width at half maximum of the strongest hyperfine component of the 
sodium D2 line at 589.0 nm is 100 MHz. A beam of light passes through a 
gas of sodium with an atom density of 1 x 1017 m-3 . Calculate: (i) The peak 
absorption coefficient due to this absorption line. (ii) The frequency at which 
the resonant contribution to the refractive index is at a maximum. (iii) The peak 
value of the resonant contribution to the refractive index. 

Solution 

(i) We are dealing with a low density gas of atoms, and so the approximations 
given in eqns J .24 and 1.25 will be valid. This means that the absorption will 
directly follow the frequency dependence of E2(W), and the peak absorption 
will occur precisely at the line centre. The peak extinction coefficient can be 
worked out from eqns 2.16 and 1.25. This gives: 

E2(WO) Ne2 1 
K(WO) = -- = -

2n 2nEomo YWO 

We do not know what n is, but because we are dealing with a gas, it will only 
be very slightly different from unity. This point is confinned in part (iii) of the 
question. We therefore take n = I here, and insert N = J X 1017 m-3, l' = 
21T X 108 S-l and uJo = 21TC/A = 3.20 X 1015 rad/s to find that K(WO) = 7.90 X 
10-5. This confirms that n » K, and hence that it is valid to use eqn 1.25. We 
then work out the absorption coefficient from Eq. 1.16, which gives: 

4Jl'K(WO) 3 -1 
amax == a(wo) = = 1.7 x IO m . A 

2.2 The dipole oscillator model 33 

The absorption coefficient measured in an 
experiment would actually be smaller than 
the value calculated here by about a factor of 
3. This discrepancy is caused by the fact that 
we arc assuming that the oscillator strength of 
the transition is unity. This point is discussed 
further in section 2.2.2 below. 
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Fig. 2.5 Absorption coefficient and refractive 
index of sodium gas in the vicinity of the 
strongest hyperfine component of the D2 line, 
on the assumption that the oscillator strength 
of the transition is unity, and that the atom 
density is 1 x 1017 m - 3. See Example 2.1 for 
the details. no represents the off-resonant re-
fractive index. which is approximately equal 
to unity. 

o 

n 

-200 -100 

1700 m-l 

--- ------r- 3.95 X 10-5 

o 100 200 

(ii) We know from Fig. 2.4 that there will be a peak: in the refractive index 
just below Woo Equation 1.24 tells us that new) = Jfl(W), and hence that 
the local maximum of n will occur at the same frequency as the maximum in 
fl. Since the peak occurs near wo, it will be valid to use eqn 2.20. The local 
maximum occurs when: 

This gives b.w = ± y /2. We see from Fig. 2.4 that b.(V = -y /2 corresponds 
to the local maximum, while b.w = +y /2 corresponds to the local minimum. 
Therefore the peak: in the refractive index occurs 50 MHz below the line centre. 

(iii) From part (ii) we know that the local maximum in the refractive index 
occurs when b.w = -y /2. We see from eqns 1.24 and 2.20 that the refractive 
index at this frequency is given by: 

nmax =.JEl = (fOO + Ne2 ) i = no (1 + 7.90 X21O-S ) i , 
2fomowoy no 

where no = Foo is the off-resonant refractive index. We are dealing with a 
low density gas, and so it is justified to take no 1 here. This implies that the 
peak value of the resonant contribution to the refractive index is :3.95 x 10-5. 

The full frequency dependence of the absorption and refractive index near 
this absorption line is plotted in Fig. 2.5. 

2.2.2 Multiple resonances 
In general, an optical medium will have many characteristic resonant frequen-
cies. We already discussed in Section 2.1 how we expect to observe separate 
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It can be shown from quantum mechanics that we must have L j Ii = I for 
each electron. Sinee the classical model predicts fj = 1 for each oscillator, 
we then interpret this by saying that a particular electron is involved in sev-
eral transitions at the same time, and the absorption strength is being divided 
between these transitions. 

2.2.3 Comparison with experimental data 
The schematic behaviour shown in Fig. 2.6 can be compared to experimental 
data on a typical solid state material. Figure 2.7 shows the frequency depen-
dence of the refractive index and extinction coefficient of fused silica (Si02) 
glass from the infrared to the X-ray spectral region. The general characteris-
tics indicated by Fig. 2.6 are clearly observed, with strong absorption in the 
infrared and ultraviolet, and a broad region of low absorption in between. The 
data confirms that n » K except near the peaks of the absorption. This means 
that the approximation whereby we associate the frequency dependence of n 
with that of Ej, and that of K with E2 (eqns 1.24 and 1.25), is valid at most 
frequencies. 

The general behaviour shown in Fig. 2.7 is typical of optical materials which 
are transparent in the visible spectral region. We already noted in Sections 1.4.1 
and 1.4.2 that the transmission range of colourless materials is determined by 

3 Si02 g1ass (a) 

2 

'" ...: 10-1 I: 
Q.l 

'0 
15 

Q.l 10-2 

B = lO-3 <: : 
I: 10-4 

10-5 

1012 1014 1015 1016 1017 

Frequency (Hz) 

2.2 The dipole oscillator model 37 

Fig. 2.7 (a) Refractive index and (b) extinc-
tion coefficient of fused silica (Si02) glass 
from the infrared to the x-ray spectral region. 
After [1]. 
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38 Classical propagation 

It is apparent from Fig. 2.6 that dn/dk will 
be negative at some frequencies close to one 
of the resonance lines. Equation 2.26 then 
implies that "g > v, and so we could again 
run into a problem with relativity. However, 
the medium is highly absorbing in these fre-
quency regions, and this means that the signal 
travels with yet another velocity called the 
signal velocity. This is always less than c. 

the electronic absorption in the ultraviolet and the vibrational absorption in the 
infrared. This is demonstrated by the transmission data for sapphire shown in 
Fig. 1.4(a). 

Silica is a glass, and hence does not have a regular crystal lattice. The 
infrared absorption is therefore caused by excitation of vibrational quanta in 
the Si02 molecules themselves. Two distinct peaks are observed at 104 x 1013 
Hz (21/,i,m) and 3.3 x 1013 Hz (9.1 f,i,m) respectively. These correspond to 
different vibrational modes of the molecule. The detailed modelling of these 
absorption bands by the oscillator model will be discussed in Chapter 10. 

The ultraviolet absorption in silica is caused by interband electronic transi-
tions. Si02 has a fundamental band gap of about 10 eV, and interband transi-
tions are possible whenever the photon energy exceeds this value. Hence we 
observe an absorption threshold in the ultraviolet at 2 x 1015 Hz (150nm). 
The interband absorption peaks at around 3 x 1015 Hz with an extremely high 
absorption coefficient of 108 m- I , and then gradually falls off to higher 
frequency. Subsidiary peaks are observed at 3 x 1016 Hz and 1.3 x 1017 Hz. 
These are caused by transitions of the inner core electrons of the silicon and 
oxygen atoms. The fact that the electronic absorption consists of a continuous 
band rather than a discrete line makes it hard to model accurately as a Lorentz 
oscillator. We will discuss the quantum theory of the interband absorption in 
Chapter 3. 

The refractive index of glass has resonances in the infrared and the ultra-
violet which correspond to the interband and vibrational absorption. In the 
far infrared region below the vibrational resonance, the refractive index is 

2, while in the hard ultraviolet and X-ray region it approaches unity. In 
the transparency region between the vibrational and interband absorption, the 
refractive index has a value of......, 1.5. Closer inspection of Fig. 2.7 shows 
that the refractive index actually increases with frequency in this transparency 
region, rising from a value of lAO at 8 x 1013 Hz (3.5 f,i,m) to 1.55 at 1.5 x 
1015 Hz (200 nm). This dispersion originates from the low frequency wings 
of the ultraviolet absorption and the high frequency wings of the infrared 
absorption, and will be discussed in more detail in Section 2.3 below. 

The data in Fig. 2.7 show that the refractive index falls below unity at a 
number of frequencies. This implies that the phase velocity of the light is 
greater than c, which might seem to imply a contradiction with relativity. 
However, this overlooks the fact that a signal must be transmitted as a wave 
packet rather than as a monochromatic wave. In a dispersive medium, a wave 
packet will propagate at the group velocity l'g given by: 

dw 
Vg = dk ' (2.25) 

rather than at the phase velocity v = w j k = c j n. The relationship between Vg 

and v is: 
Vg = v (1 - . (2.26) 

The derivation of this result is left as an exercise to the reader. (See Exer-
cise 2.7.) We will see in Section 2.3 that dnjdk is positive in most materials 
at optical frequencies. This then implies that Vg is always less than v, and 
if we were to try to transmit a signal in a spectral region where v > C, we 
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if there is just a single resonance. This is modified to 

(2.33) 

if there are multiple resonances (cf. eqn 2.24). 
We can combine eqns 2.29 and 2.30 with eqns 2.11 and 2.13 by writing 

P = NEoXa (8 + = (Er - I)E08. 
3Eo 

We put all this together to find that: 

Er - 1 
Er +2 

NXa 
3 

(2.34) 

(2.35) 

This result is known as the Clausius-Mossotti relationship. The relationship 
works well in gases and liquids. It is also valid for those crystals in which the 
Lorentz cOlTection given in eqn 2.29 gives an accurate account of the local field 
effects, namely cubic crystals. 

2.2.5 The Kramers-Kronig relationships 
The discussion of the dipole oscillator shows that the refractive index and the 
absorption coefficient are not independent parameters but are related to each 
other. This is a consequence of the fact that they are derived from the real and 
imaginary parts of a single parameter, namely the complex refractive index. If 
we invoke the law of causality (that an effect may not precede its cause) and 
apply complex number analysis, we can delive general relationships between 
the real and imaginary parts of the refractive index. These are known as the 
Kramers-Kronig relationships and may be stated as follows: 

1 100 K(W') new) = 1 + - P -,-- dw' 
IT -00 W - w 

(2.36) 

1 100 n(w') - 1 K(W) = -- P , dw', 
IT -00 W - W 

(2.37) 

where P indicates that we take the principal part of the integral. 
The Kramers-Kronig relationships allow us to calculate n from K, and vice 

versa. This can be very useful in practice, because it would allow us, for 
example, to measure the frequency dependence of the optical absorption and 
then calculate the dispersion without needing to make a separate measurement 
ofn. 

2.3 Dispersion 
Figure 2.9 plots the refractive index data from Fig. 2.7 in more detail. The data 
show that the refractive index increases with frequency in the near infrared 
and visible spectral regions. We have seen in Section 2.2.3 that this dispersion 
originates mainly from the interband absorption in the ultraviolet. At visible 
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frequencies the absorption from these transitions is negligible and the glass 
is transparent. However, the ultraviolet absorption still affects the refractive 
index through the extreme wings of the Lorentzian line. In the near infrared, 
the dispersion is also affected by the high frequency wings of the vibrational 
absorption at lower frequency. 

A material in which the refractive index increases with frequency is said to 
have normal dispersion, while one in which the contrary occurs is said to have 
anomalous dispersion. A number of empirical fonnulae to describe the normal 
dispersion of glasses have been developed over the years. (See Exercise 2.12.) 

The dispersion of the refractive index of glasses such as silica can be used 
to separate different wavelengths of light with a prism, as shown in Fig. 2.10. 
The blue light is refracted more because of the higher index of refraction, and 
is therefore deviated through a larger angle by the prism. (See Exercise 2.13.) 
This effect is used in prism spectrometers. 

Onc of the effects of dispersion is that light of different frequencies takes a 
different amount of time to propagate through a material. (See Exercise 1.11, 
for example.) A pulse of light of duration tp must necessarily contain a spread 
of frequencies given approximately by 

1 lll! -
tp 

(2.38) 

in order to satisfy the 'uncertainty principle' II I! llt '" l. Dispersion will thcre-
fore cause the pulse to broaden in time as it propagates through the medium. 
This can become a serious problem when attempting to transmit very short 
pulses through a long length of an optical material, for example in a high speed 
optical fibre telecommunications system. 
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Fig. 2.9 Refractive index of Si02 glass in the 
near infrared, visible and ultraviolet spectral 
regions. After [1]. 

The use of the words 'normal' and 'anoma-
lous' is somewhat misleading here. The 
dipole oscillator model shows us that all 
materials have anomalous dispersion at some 
frequencies. The phraseology was adopted 
before measurements of the refractive index 
had been made over a wide frequency range 
and the origin of dispersion had been prop-
erly understood. 

#tlW'f!f!lih1i 

blue 

Fig. 2.10 Separation of white light into dif-
ferent colours by dispersion in a glass prism. 
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Equation 2.40 should he contrasted with the 
usual scalar relationship between P and e 
namely (cf. eqn A.I): 

P=EOX e . 
which only applies to isotropic materials. 

We mentioned in Section 2.2.3 that a pulse of light travels with the group 
velocity vg . The important parameter for pulse spreading due to dispersion is 
therefore the group velocity dispersion (aVD) (see Exercise 2.14): 

d 2w d 2n d 2n GVD= - ex: - ex:-dk2 dw2 d),2 . (2.39) 

The Lorentz model indicates that the aVD is positive below an absorption line 
and negative above it. Applying this to the data in Fig. 2.9, we see negative 
GVD in the infrared due to the vibrational absorption and positive aVD in the 
visible due to the interband absorption in the ultraviolet. These two effects 
cancel at a wavelength in the near infrared which is identified in Fig. 2.9. 
This region of zero aVD occurs around 1.3 11m in silica optical fibres. Short 
pulses can be transmitted down the fibre with negligible temporal broadening 
at this wavelength, and so it is one of the preferred wavelengths for optical 
fibre communication systems. 

2.4 Optical anisotropy: birefringence 
The atoms in a solid are locked into a crystalline lattice with well defined axes. 
In general, we cannot assume that the optical properties along the different 
crystalline axes are equivalent. For example, the separation of the atoms might 
not be the same in all directions. This would lead to different vibrational 
frequencies, and hence a change in the refractive index between the relevant 
directions. This optical anisotropy contrasts with gases and liquids which are 
isotropic because the atoms have no preferred directions in the absence of 
external perturbations such as applied magnetic or electric fields. 

Optical anisotropy gives rise to the phenomenon of birefringence. We can 
describe the properties of a birefringent crystal by generalizing the relationship 
between the polarization and the applied electric field. If the electric field is 
applied along an arbitrary direction relative to the crystalline axes, we must 
write a tensor equation to relate P to !: 

P = toX€ (2.40) 

where X represents the susceptibility tensor. Written explicitly in terms of the 
components, we have: 

XI2 
X22 
X32 

X13 ) ( 8 x ) X23 8 y . 

X33 8 z 
(2.41) 

We can simplify this by choosing the cartesian coordinates x, y, and z to 
correspond to the principal crystalline axes. In this case, the off-diagonal com-
ponents are zero, and the susceptibility tensor takes the form: 

(
XlI 

X = 0 
o 

o 
X22 
o 

o ) o . 
X33 

(2.42) 

The relationships between the components are determined by the crystal sym-
metry. 
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