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From the diagram we observe that % should become small for frequencies higher than the plasma frequency, i.e. the electron
gas behaves like a dielectic and becomes transparent. In reality this is not completely true, the figure below shows the
dielectric functions for two real metals, silver (black) and gold (red).
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From Wooten Optical Properties of Solids

Chapter 3
ABSORPTION AND DISPERSION

This chapter consists mostly of a rather elementary treatment of absorp-
tion and dispersion. It includes some simple examples of applications to
optical properties and photoemission.

The classical theory of absorption and dispersion is due mainly to
Lorentz and Drude. The Lorentz model is applicable to insulators; its
quantum mechanical analog includes all direct interband transitions; i.e.,
all transitions for which the final state of an electron lies in a different band
but with no change in k-vector in the reduced zone scheme. The Drude
model is applicable to free-electron metals; its quantum mechanical analog
includes intraband transitions, where intraband transitions are taken to
mean all transitions not involving a reciprocal lattice vector.

Both the Lorentz and Drude models are largely ad hoc, but still useful
as starting points and for developing a feeling for optical properties. We
shall see that many features of these classical models have quantum me-
chanical counterparts which are easily understood as generalizations of
their classical analogs.

3.1 The Lorentz Oscillator

Consider an atom with electrons bound to the nucleus in much the same
way as a small mass can be bound to a large mass by a spring. This is the
Lorentz model. The motion of an electron bound to the nucleus is then
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3.1 The Lorentz Oscillator 43

described by
r r dr 2 _ . 31
mdt2+m E;+mw0r— ek . (3.1)
where m is the electronic mass and e is the magnitude of electronic charge.
The field E, is the local electric field acting on the electron as a driving
force. It is a microscopic field but is written as Ej, to eliminate confusion
with the electronic charge -e and to conform with common usage. The term
mI (dr/dt) represents viscous damping and provides for an energy loss
mechanism. The actual loss mechanism is radiation damping for a free
atom, but it arises from various scattering mechanisms in a solid. The
damping term in Eq. (3.1) is written in the form in which it often appears in
describing the electrical conductivity metals. The term mw,’r is a Hooke’s
law restoring force.

In the context of a classical model, there are two approximations in
Eq. (3.1). The nucleus has been assumed to have infinite mass, otherwise
the reduced mass should have been used. We could have simply included
the reduced mass, but our goal is to understand solids and there we can
quite accurately take the mass of the lattice as infinite. We have also neglected
the small force —ev x b/c arising from the interaction of the electron
with the magnetic field of the light wave. It is negligible because the velocity
of the electron is small compared with c.

The local field can be taken to vary in time as e~ ' ; thus the solution
to Eq. (3.1) is

- Eoc
- Ero/m (3.2)

(wo? — w?) — iTw

and the induced dipole moment is

N eZE]oc 1
P= m ((1)()2

~w?) —iTw (3:3)

Note that it is important to be consistent in the form of the time variation
used to describe time-dependent fields. The use of a time variation e’ leads
to a complex refractive index A = n — ik rather than the convention
fi = n + ik chosen earlier.

We now assume that the displacement r is sufficiently small that a linear
relationship exist between p and Eic, namely

p = d(w)Ejoc (3.4)

where &(w) is the frequency-dependent atomic polarizability. From Egs.
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(3.3) and (3.4), the polarizability for a one-electron atom is seen to be

e? 1
(w) = —

m (wy? — w?) — ilw (33

The polarizability is complex because of the inclusion of a damping term.
As a result, the polarization differs in phase from the local field at all fre-
quencies.

If there are N atoms per unit volume, the macroscopic polarization is

P = N(p) = N&(Ejoe) = 1.E (3.6)

To relate the microscopic atomic polarizability to the macroscopic electric
susceptibility, it is necessary to know the relationship between the micro-
scopic field E,,. and the macroscopic field E. Except for some limiting
ideal cases, this is a problem of considerable complexity. It is discussed
briefly in Appendix B. In general, <E,,.> # E since {E,,.> is usually an
average over atomic sites, not over regions between sites. For free-electron
metals, though, we can argue that since the conduction electrons are not
bound, the field felt by the conduction electrons is on the average just the
macroscopic field E. Then, of course, we should let w, = 0 in Eq. (3.1)
because the conduction electrons are not bound. The result is just the Drude
model for metals. However, what we shall do is something in between. We
will keep the restoring force term, but still assume for simplicity that {E, >
= E. Such a model contains all the essential features to describe the optical
properties; but it must be remembered that in the detailed analysis of
specific real solids, it is necessary to consider carefully what is the correct
field to use. Proceeding with our assumptions, then, we have

P = NGE = v E (3.7)

We are now ready to get an expression for the dielectric function in terms
of the atomic polarizability. But we now have an energy loss mechanism
explicitly included with the result that the atomic polarizability is now
complex. This means also that the fields E, P, and D are not in phase.
The most convenient way to handle the situation is to generalize some
earlier results. In analogy with Eq. (2.67), we define a complex displace-
ment D such that

D =4E=E + 47P = £ (3.8)
This is equivalent to defining D as
D =D + idn/w)J (3.9)

The physical quantities E, D, J, etc. are generally written in complex nota-
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tion as, e.g.,
D =Dgexpilg-r — wt) (3.10)

because this notation explicitly shows the phase, in addition to greatly
simplifying the mathematical manipulations. Values for these physical
quantities are obtained by taking the real part of the complex expressions
used for these quantities. Although D can also be written in complex
notation, the values for the physical quantities that D represents are not
obtained by taking the real part of D. The quantity D is truly a complex
quantity and represents the two real quantities D and J. The true values for
D must be obtained from the right-hand side of Eq. (3.9) by taking the real
parts of D and J, ie,

D(true) = Re(D) + i(4n/w) Re(J) (3.11)

Having recognized that there is a truly complex D, we shall from here on
generally follow convention and write simply D. We shall explicitly designate
complex quantities only for properties of the medium, e.g., the complex
dielectric function & and the complex polarizability 4.

Now, from Egs. (3.7) and (3.8), we get

é§ =1+ 4nNa (3.12)
Using Eq. (3.5), this becomes
s 4 dmNe ! (3.13)
m (wo? — w?) —ilTw

From Eq. (3.13) and the definitions is Eqgs. (2.89)-(2.91), we get, for non-
magnetic materials,

4nNe? (wo? — w?)
g =n*—k*=1+ (@7 — 0P + [0 (3.14)
4n7Ne? T'w
&, = 2nk = (@ — 0 1 [P (3.15)

If we consider classical atoms with more than one electron per atom, we
can extend the previous results. Let N; be the density of electrons bound
with resonance frequency w;. Then,
4ne? N;
=1+ > a (3.16)

~ (@f — o) — T

YN;=N (3.17)
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We shall shortly derive a corresponding quantum mechanical equation
which can be written

4me? Nf;

=1+ Y

m

(w? — 0?) — iTw (318)

There is a formal similarity between Egs. (3.16) and (3.18), but the meanings
of some corresponding terms are quite different. In Eq. (3.16), w; is the
resonance frequency of a bound electron, whereas in Eq. (3.18), it is the
transition frequency of an electron between two atomic states separated in
energy by fiw;. The parameter f}, called the oscillator strength, is a measure
of the relative probability of a quantum mechanical transition. We shall
show that for free atoms, it satisfies a sum rule

Yfi=1 (3.19)

which is the quantum mechanical analogy to Eq. (3.17).

Now, return to Egs. (3.14) and (3.15) and consider the frequency de-
pendence of ¢; and ¢, for a solid made of a collection of single-electron
classical atoms. The frequency dependence is illustrated graphically in

Fig. 3.1.
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Figure 3.1 shows that except for a narrow region near w,, &, increases
with increasing frequency. This is called normal dispersion. However,
there is a region near w, where ¢; decreases with increasing frequency.
This is called anomalous dispersion. We can find the width of the region of
anomalous dispersion as follows. Equating the derivative of Eq. (3.14) to
zero, we find

(@2 — Wp2)? = + T2 (3.20)

where ,, is the frequency at which ¢; is a maximum or a minimum. If
the region of anomalous dispersion is reasonably narrow, w,, = wy,

(wg — 0y) = £T7/2 (3.21)

and the full width of the region of anomalous dispersion is I'". In the absence
of an energy loss mechanism, there is a singularity at w,.

If r~0 (3.22)

&, versus o is a bell-shaped curve which is symmetric about w,. Small
values of I' compared with w, cause little distortion. From Eq. (3.15), we
find that the maximum value of ¢, is

4nNe*/m

&,(max) = Ta (3.23)
4]

assuming the maximum occurs exactly at w,. Also, the full width of the
&, curve at half maximum is I.

Figure 3.1 shows the contribution of the electronic polarizability to the
dielectric constant. There are also other contributions. For example,
in ionic crystals, in the infrared region, there is an absorption spectrum
and polarization associated with the direct stimulation of vibrational
modes of the ions by means of electromagnetic radiation. The Lorentz
model also describes that situation.

Figure 3.2 shows the general form of the polarizability to be expected

}-<~(b) (c) |

50 "

Fig. 3.2 Frequency dependence of contributions to the polanzablhty arising from orienta-
tion of (a) permanent dipoles (microwave), (b) ionic lattice vibrations (infrared), and (c) dis-
placement of electrons (visible and ultraviolet).
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in a material consisting of three discrete modes of oscillation. Although
all the modes of oscillation contribute to the polarizability and to the
dielectric constant, the contributions of ionic motions are small at optical
frequencies because of the large inertia of ions compared with electrons.
We shall consider only electronic contributions to the dielectric constant.
In that context, references to the low-frequency dielectric constant of a
material will mean the dielectric constant at the low-frequency end of the
visible region but at a frequency high compared with lattice vibrations or
molecular oscillations in the crystal.

We now want to consider the implications of the frequency dependence
of ¢, and &, for the optical properties of solids. The reflectivity of solids
at normal incidence is shown in Appendix C to be given by

_(n—1)2+k2
T+ 12+ k2

4R

(3.24)
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Fig. 3.3 Spectral dependence of ¢, and ¢,. The curves are calculated for the case in which
hwo = 4 eV, hI" = 1 ¢V, and 4nNe?/m = 60. The onset of region IV is defined by ¢, = 0.
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Using Eqgs. (2.90) and (2.91), we find that for nonmagnetic materials,
n={3[*+ &) +¢ ]} (3.25)
k={30e;*> + &%) — g ]} (3.26)

Now, from Egs. (3.14), (3.15), and (3.24)—(3.26), we can analyze the frequency-
dependent behavior of a solid in terms of whether it is primarily reflecting,
absorbing, or transparent. The results are summarized in Figs. 3.3-3.5.

In region I, ® < wq, &, = 2nk =0, and ¢, = n*> — k* > 1. We may thus
conclude that k = 0, n > 1, and ¢, = n?.

Insulators, such as KCl, typically have a refractive index of about 1.5
in region L. Thus, region I is characterized by high transparency, no ab-
sorption, and a small reflectivity for insulators. This is illustrated in Fig.

-
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Fig. 3.4 Spectral dependence of n and k. The curves are calculated from the values of &,
and ¢, given in Fig. 3.3. The regions I, I1, II1, and IV can be seen to be primarily transmitting
(T), absorbing (A), reflecting (R), and transmitting (T), respectively. These results follow from
consideration of Eq. (3.24) and the realization that strong absorption takes place only in the
neighborhood of a transition frequency.



Larry



50 Chapter 3 Absorption and Dispersion

70
. ’-‘2ﬁl">—1

60 -

55

50 -

I
|
I
|
|
|
I
I
I
|
|
!
|
|
|
|
|

R{(%)

I

1

i

|

|

| |

20 : A R i
|

15 | |

: I

|

10 | |

| |

i

5 : |

0 [ I

0 | 2 3 4 6 7 8 9 10 Il 12 13 14 15
fw (eV)

Fig. 3.5 Spectral dependence of reflectivity. The curve is calculated from the n and k values
given in Fig. 3.4.

3.6 for the reflectivity of KCl. Of course, since the treatment developed
here does not include local field corrections, it is not quantitatively ap-
plicable to highly ionic materials. However, for highly polarizable materials
such as Si and Ge, there is probably no need to include local field corrections.

The difficulty with applying the present formulas to real materials,
even in the absence of local field corrections, is that real materials cor-
respond to a collection of Lorentz oscillators with different frequencies
spread out over bands. Nonetheless, if we think of the frequency of a Lorentz
oscillator as corresponding to the transition frequency across the band
gap of an insulator or semiconductor, we can make some estimates of
the optical properties. We can even include approximate band structure
effects by using an effective mass rather than the free-electron mass. For
example, Fig. 3.7 shows that the reflectivity of Si rises sharply at about
3 eV. This corresponds to a frequency w, = 4.5 x 10!5 sec™!. If we take
this as an approximate value for the average spring frequency to be used
in Eq. (3.14), and assume four valence electrons per Si atom, each with the
mass of a free electron, then ¢,(w — 0) = 15. That is in fairly good agreement
with the experimental low-frequency value ¢; = 12.
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Fig. 3.6 The spectral dependence of the reflectance of KCL. The region of transparency
extends to about 7 eV. Above 7 eV, there are a number of sharp peaks related to narrow energy
bands and excitons. [From H. R. Philipp and H. Ehrenreich, Phys. Rev. 131, 2016 (1963).]

The refractive index for more highly polarizable materials such as Si
and Ge is higher than for ionic insulators. For Si, n = 3.5, and for Ge at low
frequencies, n = 4. As a result, the reflectivity can be appreciable in region I
even though there is no absorption. The reflectivity arises from the induced
polarization current corresponding to the valence electrons oscillating out
of phase with the incident radiation. There is no absorption for this process,
but the interference of the incident beam with the waves reradiated by the
valence electrons does lead to appreciable reflectivity.

That the Lorentz model is qualitatively correct for semiconductors and
insulators is also indicated by the dependence of ¢, on band gap. Thus, if
we identify fiw, as corresponding approximately to the band gap, then ¢,
should decrease with increasing band gap. That indeed is the case. The
band gaps of Ge, Si and KCl are, respectively, 0.8, 1.1, and 7.5 eV, whereas
the low-frequency optical dielectric constants are, respectively,4,3.5,and 1.5.

Region II of Figs. 3.3-3.5 is characterized by strong absorption. There may
also be appreciable reflectivity in this region. That simply means that
although the values of n and k may be high, leading to appreciable reflec-
tivity, the light that is not reflected is strongly absorbed in the material.

In region III, ® > w,, and the electrons of the insulator respond as if
they were free electrons. This is because the photon energy is much greater
than the binding energy of the electron. The insulator thus has a metallic
reflectance. Of course, for good insulators, this region lies well into the
vacuum-ultraviolet and cannot be observed visually. However, for semi-
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Fig. 3.7 The spectral dependence of the reflectance and dielectric functions of Si. Regions
1, IL, 111, and 1V correspond to the regions with the same designation shown in Figs. 3.1, 3.3,
and 3.4. [H. R. Philipp and H. Ehrenreich, Phys. Rev. 129. 1550 (1963).]

conductors like Ge and Si, the band gap lies in the infrared and the region
of metallic reflectance is in the visible. Thus, KCl is transparent to the eye,
but Ge and Si have a metallic appearance.

The onset of region IV is defined by ¢, = 0. This happens at a frequency
o, called the plasma frequency. From Eq. (3.14), assuming o > w, > T,
we find

w,” = 4nNe*/m (3.27)

3.2 The Drude Model for Metals

The Drude model for metals is obtained directly from the Lorentz model
for insulators simply by equating the restoring force to zero. The conduction



Larry


Larry



3.2 The Drude Model for Metals 53

electrons of a metal are not bound. Furthermore, because the wave function
for a free electron is distributed fairly uniformly throughout the metal, the
field acting on the electron is just the average field. Thus, there is no need
to make corrections for the local field.

From Egs. (3.14) and (3.15), taking w, = 0, we have

4nNe? 1
m  (w?+T?

g =1 (3.28)

4nNe? r (3.29)
£, = .
2 m o +T?

The origin of the viscous damping term for a free-electron metal is the
ordinary scattering of electrons associated with electrical resistivity. In the
next chapter, when we derive the properties of a free-electron metal in terms
of a complex conductivity rather than a complex dielectric function, we shall
see that I’ = ¢~ !, where 7 is the mean free time between collisions. If we
now make the substitution I' = ¢!, and use Eq. (3.27), we get from Egs.
(3.28) and (3.29)

w?7?

- 3.30
& (1 + w’t?) (3:30)
&, = ______ﬁ’L (3.31)
27 ol + 0t :

Since the Drude model is obtained directly from the Lorentz model
simply by setting w, equal to zero, the optical properties of a free-electron
metal should resemble those for an insulator at frequencies greater than
wo. As we saw in the preceding section, the frequency range @ > , in an
insulator corresponds to the region in which the electrons are effectively
free, so that it might be more accurate to say that an insulator responds
like a metal to photons of energy hw > hw.

A plot of the dielectric functions and the optical constants for a Drude
metal is shown in Figs. 3.8-3.10. The corresponding reflectivity is shown
in Fig. 3.11. It is clear from Fig. 3.11 that for an ideal free-electron metal,
the reflectivity approaches unity below the plasma frequency. Above the
plasma frequency, the metal is transparent and the reflectivity decreases
rapidly with increasing frequency. That this describes the behavior of
real free-electron metals is shown in Figs. 3.12 and 3.13.

The plasma frequency typically lies in the visible or ultraviolet spectral
region. That corresponds to @ > 10'° sec™'. The mean free collision time
for electrons in metals is typically t ~ 10~ !* sec. Thus, in the region of the
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Fig. 3.8 Spectral dependence of ¢, and &, for a free-electron metal. The calculations are for
the case in which 4zNe’/m = w,? = 30 eV? and A" = 0.02 V. Note the difference in scale
of the ordinate along the positive and negative axes. The magnitude of ¢, is much greater than
that of ¢, for the frequency range shown. For hw < AT, |e,/e,| - I'/w and &, dominates.

plasma frequency, wt > 1, and from Eq. (3.30), we get
g =n* — kX =1 — (0,%/0?) (3.32)
From Fig. 3.9, it is clear that n > k just above the plasma frequency and so
Eq. (3.32) simplifies to
nx 1 — (w,2/w?) (3.33)

for hw > hw,,. Just at the plasma frequency, n &~ 0. But what does it mean
that the refractive index is zero? The index of refraction is defined in terms
of the phase velocity as v, = ¢/n. Thus, a zero value for n means an infinite
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Fig. 3.9 Spectral dependence of n and k for a free-electron metal. The curves are calculated
from the values of ¢, given in Fig. 3.8. Regions III and IV correspond to the same regions
as shown in Fig. 3.4. Region II, the region of strong absorption, is the range 0 = #w = 0.02 eV
in this case. It is, in general, the range 0 < hw < AT". Region I does not exist for metals.

phase velocity and an infinite wavelength. That the wavelength becomes
infinite means the electrons are all oscillating in phase; however, there is
no polarization charge density as with a true plasma oscillation. The dis-
tinction is made clear in the next section as well as in Chapter 9.

3.3 A Qualitative Look at Real Metals

We will now use the Lorentz and Drude models in a discussion of the
optical behavior of some real metals. Real metals exhibit aspects of both
models. To see the role of both models in describing real metals, consider
the schematic band diagram for a metal as shown in Fig. 3.14.

Two typical transitions are illustrated in Fig. 3.14. The first of these,
called an intraband transition, corresponds to the optical excitation of an
electron from below the Fermi energy to another state above the Fermi
energy but within the same band. These transitions are described by the
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Drude model. There is no threshold energy for such transitions; however,
they can occur only in metals. Insulators do not have partially filled bands
that would allow excitation of an electron from a filled state below the
Fermi energy to an empty state within the same band. That is, of course,
what makes an insulator nonconducting.

The second transition illustrated in Fig. 3.14 is a direct interband transi-
tion. It is the optical excitation of an electron to another band. It is called
a direct or vertical transition because it involves only the excitation of an
electron by a photon. Since the momentum of a photon is very small com-
pared with the range of values of crystal momentum in the Brillouin zone,
conservation of total crystal momentum of the electron plus photon means
that the value of wave vector k for the electron is essentially unchanged in
the reduced zone scheme. There are nonvertical or indirect transitions
between bands, and we shall consider them later; but for present purposes,
a discussion of direct transitions is sufficient to illustrate the characteristic
optical properties of real metals.

Direct interband transitions have a threshold energy. For the band

10

fhwleV)

Fig. 3.10 A semilogarithmic plot of the n and k values for a free-electron metal as taken
from Fig. 3.9.
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Fig. 3.11 Spectral dependence of reflectivity for a free-electron metal. The curve is calculated
from the n and k values given in Fig. 3.9.

diagram shown in Fig. 3.14, the threshold energy is the energy fim, for the
transition from the Fermi energy at k, to the same state k, in the next
higher band. This threshold energy is analogous to that for the excitation
of an electron across the band gap in an insulator.

Now, how do we use these models to understand real metals, and where
do we begin? The beginning is an experimental determination of the re-
flectance over a wide frequency range. From the reflectance, the dielectric
function can be obtained using, e.g., a Kramers—Kronig analysis as discussed
in Chapter 6. The dielectric function can then sometimes be split into bound
(Lorentz) and free (Drude) contributions and interpreted in terms of the
fundamental electronic band structure of the solid. We shall see how this
can be done in some cases by following through the steps used by Ehrenreich
and Philipp in their classic paper on the optical properties of silver and
copper.

The reflectance of silver is shown in Fig. 3.15. A band diagram for the
noble metals is shown schematically in Fig. 3.16. The d bands lie several
volts below the Fermi energy. Thus, only interband transitions of conduc-
tion electrons are possible at low energies, and an onset of interband
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1.3 The complex refractive index and dielectric constant 5

Example 1.1

The reflectivity of silicon at 633 nm is 35% and the absorption coefficient is
3.8 x 10° m™!, Calculate the transmission and optical density of a sample with
a thickness of 10 um.

Solution

The transmission is given by eqn 1.6 with R = 0.35 and o/ = (3.8 x 10%) x
(10 x 107%) = 3.8. This gives:

T = (1 —0.35)% - exp(—3.8) = 0.0095.
The optical density is given by eqn I.8:

O.D. =0.434 x 3.8 =1.65.

1.3 The complex refractive index and dielectric
constant

In the previous section we mentioned that the absorption and refraction of a
medium can be described by a single quantity called the complex refractive
index. This is usually given the symbol 7 and is defined through the equation:

i=n+ic. (1.11)

The real part of n, namely #, is the same as the normal refractive index defined
in eqn. 1.2. The imaginary part of 7, namely «, is called the extinction coeffi-
cient. As we will see below, « is directly related to the absorption coefficient «
of the medium.

The relationship between « and « can be derived by considering the prop-
agation of plane electromagnetic waves through a medium with a complex
refractive index. If the wave is propagating in the z direction, the spatial and
time dependence of the electric field is given by (see eqn A.32 in Appendix A):

E(z,1) = g ki oD (1.12)

where k is the wave vector of the light and w is the angular frequency. |Ep|
is the amplitude at z = 0. In a non-absorbing medium of refractive index n,
the wavelength of the light is reduced by a factor n compared to the free space
wavelength A. k and w are therefore related to each other. through:

_ 2 no

T /n) ¢
This can be generalized to the casc of an absorbing medium by allowing the
refractive index to be complex:

(1.13)

k=rn

ale

=@ +i,c)-‘;i. (1.14)
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6 Introduction

On substituting eqn 1.14 into eqn 1.12, we obtain:

E(Z, t) — 80 ei(wﬁz/c-wt)
=& e—xwz/c ei(a)nz/c~wt) . (1.15)

This shows that a non-zero extinction coefficient leads to an exponential decay
of the wave in the medium. At the same time, the real part of 7 still deter-
mines the phase velocity of the wave front, as in the standard definition of the
refractive index given in eqn 1.2.

The optical intensity of a light wave is proportional to the square of the
electric field, namely / « £€* (c.f. eqn A.40). We can therefore deduce from
eqn 1.15 that the intensity falls off exponentially in the medium with a decay
constant equal to 2 x (kw/c). On comparing this to Beer’s law given in eqn 1.4

we conclude that:
2k w _ Ak

*= c A
where A is the free space wavelength of the light. This shows us that « is
directly proportional to the absorption coefficient.

We can relate the refractive index of a medium to its relative dielectric
constant €, by using the standard result derived from Maxwell’s equations (cf.

eqn A.31 in Appendix A):

: (1.16)

n=./¢. (1.17)
This shows us that if 7 is complex, then €; must also be complex. We therefore
define the complex relative dielectric constant & according to:

& =¢€+iey. (1.18)

By analogy with eqn 1.17, we see that 71 and €, are related to each other
through:
it =& (1.19)

We can now work out explicit relationships between the real and imaginary
parts of r and €, by combining eqns 1.11, 1.18 and 1.19. These are:

€1 =n>—«? (1.20)
€ = 20K , (1.21)
and
_ 1 2, 21\
nwﬁ(ﬂ + (e +ed?) (1.22)
_ 1 2 2.1 %
K= ﬁ (—61 + (€7 +62)2) . (1.23)

This analysis shows us that 7 and €, are not independent variables: if we know
€1 and € we can calculate n and k, and vice versa. Note that if the medium
is only weakly absorbing, then we can assume that « is very small, so that
eqns 1.22 and 1.23 simplify to:

n=.a (1.24)
=2
k=5 (1.25)
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1.3 The complex refractive index and dielectric constant 7

These equations show us that the refractive index is basically determined by the
real part of the dielectric constant, while the absorption is mainly determined
by the imaginary part. This generalization is obviously not valid if the medium
has a very large absorption coefficient.

The microscopic models that we will be developing throughout the book
usually enable us to calculate & rather than n. The measurable optical proper-
ties can then be obtained by converting €1 and €, to n and « through eqns 1.22
and 1.23. The refractive index is given directly by n, while the absorption
coefficient can be worked out from « using eqn 1.16. The reflectivity depends
on both n and « and is given by

i~ 1/ (n— 12+ 2
A+1l]  (n+D2+k2
This formula is derived in eqn A.50. It gives the coefficient of reflection be-
tween the medium and the air (or vacuum) at normal incidence.

In a transparent material such as glass in the visible region of the spectrum,
the absorption coefficient is very small. Equations 1.16 and 1.21 then tell us
that « and e, are negligible, and hence that both 7 and €, may be taken as real
numbers. This is why tables of the properties of transparent optical materials
generally list only the real parts of the refractive index and dielectric constant.
On the other hand, if there is significant absorption, then we will need to know
both the real and imaginary parts of 7 and €.

In the remainder of this book we will take it as explicitly assumed that both
the refractive index and the dielectric constant are complex quantities. We will
therefore drop the tilde notation on n and € from now on, except where it
is explicitly needed to avoid ambiguity. It will usually be obvious from the
context whether we are dealing with real or complex quantities.

(1.26)

Example 1.2

The complex refractive index of germanium at 400 nm is given by i =
4.141 + i 2.215. Calculate for germanium at 400 nm: (a) the phase velocity of
light, (b) the absorption coefficient, and (c) the reflectivity.

Solution

(a) The velocity of light is given by eqn 1.2, where n is the real part of 1. Hence
we obtain:
c 2998 x10°
n 4141
(b) The absorption coefficient is given by eqn 1.16. By inserting k = 2.215
and A = 400 nm, we obtain:
4 x 2.215
a=-———m
400 x 1072
(c) The reflectivity is given by eqn 1.26. Inserting n = 4.141 and « = 2.215
into this, we obtain:

v = ms ! =724 x10"ms™!.

1 =696 %x10"m™!.

(4141 — D +2.215?

- =471%.
(@141 + 1)2 +2.2152 7
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Table 1.4 Composition, refractive index and ultraviolet transmission of common glasses. The letters after the names give the abbreviations used to
identify the glass type. The composition figures are the percentage by mass. The refractive index is measured at 546.1 nm, and the transmission is

for a 1 cm plate at 310 nm. After [1], [4].

Name Si0p B0O3 AlO3 Nay0 K0 CaO BaO PbO P05 n T
Fused silica 100 1460 091
Crown (K) 74 9 11 6 1513 04
Borosilicate crown (BK) 70 10 8 8 1 3 1.519 035
Phosphate crown (PK) 3 10 12 5 70 1.527 046
Light flint (LF) 53 5 8 34 1.585  0.008
Flint (F) 47 2 7 44 1.607 -
Dense flint (SF) 33 5 62 1.746 -
infrared visible UV
1.0
0.8 |-
2
& 06} silver
3
T 041
"4
02
OO PO S I T I S | 1
10
Fig. 1.5 Reflectivity of silver from the in-
frared to the ultraviolet. After [4]. Wavelength (um)

1.4.3 Metals

The characteristic optical feature of metals is that they are shiny. This is why
metals like silver and aluminium have been used for making mirrors for cen-
turies. The shiny appearance is a consequence of their very high reflection
coefficients. We will see in Chapter 7 that the high reflectivity is caused by the
interaction of the light with the free electrons that are present in the metal.

Figure 1.5 shows the reflectivity of silver from the infrared spectral region
to the ultraviolet. We see that the reflectivity is very close to 100 % in the
infrared, and stays above 80 % throughout the whole visible spectral region.
The reflectivity then drops sharply in the ultraviolet. This general behaviour
is observed in all metals. There is strong reflection for all frequencies below
a characteristic cut-off frequency called the plasma frequency. The plasma
frequency corresponds to a wavelength in the ultraviolet spectral region, and so
metals reflect infrared and visible wavelengths, but transmit ultraviolet wave-
lengths. This effect is called the ultraviolet transmission of metals.

Some metals have characteristic colours. Copper, for example, has a pinkish
colour, while gold is yellowish. These colours are caused by interband elec-
tronic transitions that occur in addition to the free carrier effects that cause the
reflection. This point will be explained in Section 7.3.2 of Chapter 7.
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a greater electron affinity than hydrogen, and so the valence electrons in the
O-H bond sit closer to the oxygen atoms. The two hydrogen atoms therefore
possess a small positive charge which is balanced by a negative charge of twice
the magnitude on the oxygen atom.

In a crystalline solid formed from the condensation of polar molecules, the
atoms are arranged in an alternating sequence of positive and negative ions.
The ions can vibrate about their equilibrium positions, and this produces oscil-
lating dipole waves. These oscillations are associated with lattice vibrations,
and they occur at frequencies in the infrared spectral region. We will consider
the optical properties related to the lattice vibrations in detail in Chapter 10. We
will see there that the light-matter interaction is associated with the excitation
of phonons, which are quantized lattice waves. At this stage, we simply note
that the lattice vibrations of a polar crystal give rise to strong optical effects
in the infrared spectral region. These effects occur in addition to those due to
the bound electrons of the atoms that comprise the crystal. In practice we can
treat these two types of dipoles separately because the resonances are sharp
and they occur at very different frequencies. Therefore the resonant effects of
the bound electrons are negligible at the frequencies of the lattice vibrations,
and vice versa. This point will be considered in more detail in Section 2.2.2.

2.1.3 Free electron oscillators

The electronic and vibrational dipoles considered above are both examples
of bound oscillators. Metals and doped semiconductors, by contrast, contain
significant numbers of free electrons. As the name implies, these are electrons
that are not bound to any atoms, and therefore do not experience any restoring
forces when they are displaced. This implies that the spring constant in eqn 2.2
is zero, and hence that the natural resonant frequency wp = 0.

The free electron model of metals is attributed to Paul Drude, and so the
application of the dipole oscillator model to free electron systems is generally
called the Drude—Lorentz model. The dipole oscillator model is perfectly valid,
except that we must set wp = 0 throughout. The optical properties of free
electron systems will be discussed in Chapter 7.

2.2 The dipole oscillator model

In the previous section we introduced the general assumptions of the dipole
oscillator model. We now want to use the model to calculate the frequency
dependence of the refractive index and absorption coefficient. This will pro-
vide a simple explanation for the dispersion of the refractive index in optical
materials, and will also illustrate a very general point that the phenomena of
absorption and refraction are related to each other.

2.2.1 The Lorentz oscillator

We consider the interaction between a light wave and an atom with a single
resonant frequency wp due to the bound electrons, as given by eqn 2.2. We

2.2 The dipole oscillator model 29
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30 Classical propagation

We know from experimental observations
that atoms must have many natural resonant
frequencies to account for the multiplicity of
lines in the absorption and emission spectra.
However, the salient features of the physical
behaviour are well illustrated by a singly
resonant system, and the inclusion of mul-
tiple resonances complicates the discussion
without adding much to the physical under-
standing at this stage. We therefore postpone
the discussion of the effects of multiple reso-
nances to subsection 2.2.2 below.

Note that the phase factors ® and ¢’ in
eqns 2.6 and 2.7 are not necessarily the same.
In fact, the phase of the electrons will tend
to lag behind the phase of the light. This is
a well known property of forced oscillations:
the vibrations occur at the same frequency as
the driving force but lag behind due to the
damping term. This phase lag is the origin of
the slowing down of the light in the optical
medium, as discussed above in Section 2.1.

model the displacement of the atomic dipoles as damped harmonic oscillators.
The inclusion of damping is a consequence of the fact that the oscillating
dipoles can lose their energy by collisional processes. In solids, this would
typically occur through an interaction with a phonon which has been thermally
excited in the crystal. As we will see, the damping term has the effect of
reducing the peak absorption coefficient and broadening the absorption line.

The electric field of the light wave induces forced oscillations of the atomic
dipole through the driving forces exerted on the electrons. We make the as-
sumption that my 3> mg here so that we can ignore the motion of the nucleus.
The displacement x of the electron is governed by an equation of motion of the
form:

d*x dx

mo—-= +m0y—-t— +m0cu%x = —e&,

2.5
dr? d 25)

where y is the damping rate, e is the magnitude of the electric charge of the
electron, and £ is the electric field of the light wave. The terms on the left hand
side represent the acceleration, the damping and the restoring force respec-
tively. The damping is modelled by a frictional force which is proportional to
the velocity and impedes the motion. The term on the right hand side represents
the driving force due to the AC electric field of the light wave.

We consider the interaction of the atom with a monochromatic light wave of
angular frequency w. The time dependence of the electric field is given by

£(1) = &g cos(wt + B) = £ Re ( exp (=it — cb)), (2.6)
where € is the amplitude and ® is the phase of the light. In order to keep
consistency with the sign convention introduced later, we have chosen to take
the negative frequency part of the complex exponential.

The AC electric field will drive oscillations at its own frequency w. We
therefore substitute eqn 2.6 into egn 2.5 and look for solutions of the form:

x(t) = Xo Re ( exp (—iwt — cb’)) , 2.7)
where Xo and @’ are the amplitude and phase of the oscillations. We can in-
corporate the phase factors of eqns 2.6 and 2.7 into the amplitudes by allowing
both € and X to be complex numbers. We then substitute.s(t) = Epe !
into eqn 2.5, and look for solutions of the form x (r) = Xoe™*%". This gives:

—moa)zX()e*iwl - imoya)Xoe'i“’t —}-moa)(z)Xoe_iwt = —egoc_iwt , (2.8)
which implies that:
—e&
Xo = __2_.6_0_/'_@__. ) (2.9)
wf— o —iyw

The displacement of the electrons from their equilibrium position produces
a time varying dipole moment p(t), as shown in Fig. 2.2. The magnitude
of the dipole is given by eqn 2.4. This gives a resonant contribution to the
macroscopic polarization (dipole moment per unit volume) of the medium. If
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N is the number of atoms per unit volume, the resonant polarization is given
by:

Presonant = Np
= —Nex
Ne? 1

mo (0} — 0? —iyw)

E. (2.10)

A quick inspection of eqn 2.10 shows that the magnitude of Presonant 1S small
unless the frequency is close to wq. This is another general property of forced
oscillations: the response is small unless the frequency is close to resonance
with the natural frequency of the oscillator.

Equation 2.10 can be used to obtain the complex relative dielectric constant
€. The electric displacement D of the medium is related to the electric field
&€ and polarization P through:

D =€ +P, (2.11)

where the bold font indicates vector quantities (see eqn A.2 in Appendix A).
We are interested in the optical response at frequencies close to wp, and so
we split the polarization into a non-resonant background term and the resonant
term arising from the driven response of the oscillator. We therefore write:

D = €€ + Pbackground + Presonant
=€0€ + €0 X € + Presonant- (2.12)

To simplify the mathematics, we will assume that the material is isotropic, in
which case the relative dielectric constant is defined through the relationship:

D = €&, € . (2.13)
We then combine eqns 2.10-2.13 to obtain:

Neé? 1

er(w) =14 x -+ .
@) X eomo (wf — w? — iyw)

(2.14)

This can be spilt into its real and imaginary parts according to eqn 1.18 to give:

Né? g — »?
(@) =14y + (2.15)
: €omo (w3 — w?)? + (yw)?
Née? yw
e (w) = , 2.16
0= e @ — PP 1 Gyt 210

These formulae can be simplified further if we are working at frequencies close
to resonance, where @ ~ wq >> y. This allows us to approximate (w% — w?)
by 2wgAw, where Aw = (w — wp) is the detuning from wg. We then notice
that the low and high frequency limits of €(w) are given by

Né?
e =¢eg=1+x+ —> 2.17)
€gmowy

2.2 The dipole oscillator model 31

The electric susceptibility x in egn 2.12
accounts for all other contributions to the
polarizability of the atoms. We will discuss
the physical meaning of the ‘non-resonant
polarization’ in subsection 2.2.2 below.

The treatment of non-isotropic materials only
introduces unnecessary complications at this
stage, and will be covered briefly in Sec-
tion 2.4.


Larry



32 Classical propagation

Fig. 2.4 Frequency dependence of the real
and imaginary parts of the complex dielectric
constant of a dipole oscillator at frequencies
close to resonance. The graphs are calcu-
lated for an oscillator with wy = 10'* rad/s,
y=5X10"2571, e, = 12.1 and e, = 10. Also
shown is the real and imaginary part of the
refractive index calculated from the dielec-
tric constant.
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and
€e(0) =€ =14 (2.18)

respectively. The subscript on €y stands for ‘static’, since it represents the
dielectric response to static electric fields. With this notation we find that:

Né?
(est — €00) = —. (2.19)
€oMmow,

We finally rewrite eqns 2.15 and 2.16 in the following form valid at frequencies
close to resonance:

2woAw
A — — - .
€1(A®) = €00 — (€5t — €co) o) (2.20)
ywo
Aw) = (€5t — €00) ——mm— . 22
€2(Aw) = (€t — €c0) Bw) 12 (2.21)

These equations describe a sharp atomic absorption line centred at wq with full
width at half maximum equal to v.

Figure 2.4 shows the frequency dependence of €, and e, predicted by
eqns 2.20-2.21 for an oscillator with w, = 10"radfs, y=5x 10?57},
€y =12.1 and €, =10. These numbers are fairly typical of the infrared
absorption lines in an ionic crystal. We see that €, is a strongly peaked function
of w with a maximum value at wy and a full width at half maximum equal to
v. The frequency dependence of € is more complicated. As we approach wq
from below, €; gradually rises from the low frequency value of €, and reaches
a peak at wy — /2. (See Example 2.1.) It then falls sharply, passing through a
minimum at oy + y/2 before rising again to the high frequency limit of €.
Note that the frequency scale over which these effects occur is determined
by v for both €; and €,. This shows that the damping of the oscillator causes
line broadening. The frequency dependence determined of €; and €, shown in
Fig. 2.4 is called Lorentzian after the originator of the dipole model.

In an experiment we actually measure the refractive index n and the ab-
sorption coefficient a. The measurement of « then determines the extinction
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coefficient « through eqn 1.16. Figure 2.4 shows the values of »n and « calcu-
lated from €; and €; using eqns 1.22 and 1.23. We see that n approximately
follows the frequency dependence of +/€;(w), while k¥ more or less follows
€2(w). The correspondence n < /€ and k <> €2 would be exact if x were
much smaller than n (cf. eqns 1.24 and 1.25). This is what generally happens
in gases in which the low density of atoms makes the total absorption small.
In the example shown in Fig. 2.4 the correspondence is only approximate
because the absorption is very strong near wy, so that we cannot always assume
n > k. Nevertheless, the basic behaviour shows that the absorption peaks at
a frequency very close to wg and has a width of about y, while the refractive
index shows positive and negative excursions below and above wg. This is the
typical behaviour expected of an atomic absorption line.

One interesting aspect of the Lorentz oscillator is that it affects the re-
fractive index over a much larger frequency range than the absorption. This
point is clearly shown in the graphs given in Fig. 2.4. The absorption is a
strongly peaked function of e and falls off as (Aw)~? as we tune away from
resonance. Thus there is no significant absorption if we tune sufficiently far
from resonance. On the other hand, the frequency dependence of the refractive
index varies as |Aw| ™! for large | Aw|. This follows from eqn 2.20 with the
approximation n = ,/€j, which is valid for large |Aw| when €; is very small.

Example 2.1

The full width at half maximum of the strongest hyperfine component of the
sodium D; line at 589.0nm is 100 MHz. A beam of light passes through a
gas of sodium with an atom density of 1 x 107 m~3. Calculate: (i) The peak
absorption coefficient due to this absorption line. (ii) The frequency at which
the resonant contribution to the refractive index is at a maximum. (iii) The peak
value of the resonant contribution to the refractive index.

Solution

(i) We are dealing with a low density gas of atoms, and so the approximations
given in eqns 1.24 and 1.25 will be valid. This means that the absorption will
directly follow the frequency dependence of €;(w), and the peak absorption
will occur precisely at the line centre. The peak extinction coefficient can be
worked out from eqns 2.16 and 1.25. This gives:

_efwy) Ner |1
T 2n 2neymg ywo

K (wp)

We do not know what n is, but because we are dealing with a gas, it will only
be very slightly different from unity. This point is confirmed in part (iii) of the
question. We therefore take n = 1 here, and insert N = 1 X 107 m™3, y =
27 X 10% s71and wy = 27r¢/A = 3.20 X 10" rad/s to find that x(wg) = 7.90 X
1073, This confirms that n > x, and hence that it is valid to use eqn 1.25. We
then work out the absorption coetficient from Eq. 1.16, which gives:

4 (wo)

Omax = a(wg) = —— =17x10°m™}.
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The absorption coefficient measured in an
experiment would actually be smaller than
the value calculated here by about a factor of
3. This discrepancy is caused by the fact that
we are assuming that the oscillator strength of
the transition is unity. This point is discussed
further in section 2.2.2 below.
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Fig. 2.5 Absorption coefficient and refractive
index of sodium gas in the vicinity of the
strongest hyperfine component of the D5 line,
on the assumption that the oscillator strength
of the transition is unity, and that the atom
density is 1 x 1017 m™3 See Example 2.1 for
the details. ng represents the off-resonant re-
fractive index, which is approximately equal
to unity.
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(ii) We know from Fig. 2.4 that there will be a peak in the refractive index
just below wq. Equation 1.24 tells us that n(w) = +/€1(w), and hence that
the local maximum of n will occur at the same frequency as the maximum in
€1. Since the peak occurs near wy, it will be valid to use egn 2.20. The local
maximum occurs when:

dey(®) _ dei(Aw) o 4Aw) —y*
do ~ dhw  [HAw)?+p22

This gives Aw = £y /2. We see from Fig. 2.4 that Aw = —y /2 corresponds
to the local maximum, while Aw = 4y /2 corresponds to the local minimum.
Therefore the peak in the refractive index occurs 50 MHz below the line centre.

(iii) From part (ii) we know that the local maximum in the refractive index
occurs when Aw = —y /2. We see from eqns 1.24 and 2.20 that the refractive
index at this frequency is given by:

1

1
Ne2 \? 7.90 x 1075\ ?
nmax=~/61:<€ +——————) =n0<1+—2—— N

o0
2egmowoy ng

where ng = /€ is the off-resonant refractive index. We are dealing with a
low density gas, and so it is justified to take ng &~ 1 here. This implies that the
peak value of the resonant contribution to the refractive index is 3.95 x 107.

The full frequency dependence of the absorption and refractive index near
this absorption line is plotted in Fig. 2.5.

2.2.2 Multiple resonances

In general, an optical medium will have many characteristic resonant frequen-
cies. We already discussed in Section 2.1 how we expect to observe separate
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It can be shown from quantum mechanics that we must have °; f; = 1 for
each electron. Since the classical model predicts f; = 1 for each oscillator,
we then interpret this by saying that a particular electron is involved in sev-
eral transitions at the same time, and the absorption strength is being divided
between these transitions.

2.2.3 Comparison with experimental data

The schematic behaviour shown in Fig. 2.6 can be compared to experimental
data on a typical solid state material. Figure 2.7 shows the frequency depen-
dence of the refractive index and extinction coefficient of fused silica (SiO,)
glass from the infrared to the X-ray spectral region. The general characteris-
tics indicated by Fig. 2.6 are clearly observed, with strong absorption in the
infrared and ultraviolet, and a broad region of low absorption in between. The
data confirms that n 3> « except near the peaks of the absorption. This means
that the approximation whereby we associate the frequency dependence of n
with that of €;, and that of « with €, (eqns 1.24 and 1.25), is valid at most
frequencies.

The general behaviour shown in Fig. 2.7 is typical of optical materials which
are transparent in the visible spectral region. We already noted in Sections 1.4.1
and 1.4.2 that the transmission range of colourless materials is determined by
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Fig. 2.7 (a) Refractive index and (b) extinc-
tion coefficient of fused silica (SiO;) glass
from the infrared to the x-ray spectral region.
After [1].
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38 Classical propagation

It is apparent from Fig. 2.6 that dn/dk will
be negative at some frequencies close to one
of the resonance lines. Equation 2.26 then
implies that vg > v, and so we could again
run into a problem with relativity. However,
the medium is highly absorbing in these fre-
quency regions, and this means that the signal
travels with yet another velocity called the
signal velocity. This is always less than c.

the electronic absorption in the ultraviolet and the vibrational absorption in the
infrared. This is demonstrated by the transmission data for sapphire shown in
Fig. 1.4(a).

Silica is a glass, and hence does not have a regular crystal lattice. The
infrared absorption is therefore caused by excitation of vibrational quanta in
the SiO molecules themselves. Two distinct peaks are observed at 1.4 x 1013
Hz (21 um) and 3.3 x 103 Hz (9.1 um) respectively. These correspond to
different vibrational modes of the molecule. The detailed modelling of these
absorption bands by the oscillator model will be discussed in Chapter 10.

The ultraviolet absorption in silica is caused by interband electronic transi-
tions. SiO; has a fundamental band gap of about 10 eV, and interband transi-
tions are possible whenever the photon energy exceeds this value. Hence we
observe an absorption threshold in the ultraviolet at 2 x 101> Hz (150 nm).
The interband absorption peaks at around 3 x 10'3 Hz with an extremely high
absorption coefficient of ~ 10®m™!, and then gradually falls off to higher
frequency. Subsidiary peaks are observed at ~ 3 x 10'® Hz and 1.3 x 10!7 Hz.
These are caused by transitions of the inner core electrons of the silicon and
oxygen atoms. The fact that the electronic absorption consists of a continuous
band rather than a discrete line makes it hard to model accurately as a Lorentz
oscillator. We will discuss the quantum theory of the interband absorption in
Chapter 3.

The refractive index of glass has resonances in the infrared and the ultra-
violet which correspond to the interband and vibrational absorption. In the
far infrared region below the vibrational resonance, the refractive index is
~ 2, while in the hard ultraviolet and X-ray region it approaches unity. In
the transparency region between the vibrational and interband absorption, the
refractive index has a value of ~ 1.5. Closer inspection of Fig. 2.7 shows
that the refractive index actually increases with frequency in this transparency
region, rising from a value of 1.40 at 8 x 103 Hz (3.5um) to 1.55 at 1.5 x
10'3 Hz (200 nm). This dispersion originates from the low frequency wings
of the ultraviolet absorption and the high frequency wings of the infrared
absorption, and will be discussed in more detail in Section 2.3 below.

The data in Fig. 2.7 show that the refractive index falls below unity at a
number of frequencies. This implies that the phase velocity of the light is
greater than ¢, which might seem to imply a contradiction with relativity.
However, this overlooks the fact that a signal must be transmitted as a wave
packet rather than as a monochromatic wave. In a dispersive medium, a wave
packet will propagate at the group velocity vy given by:

dw
=—, 2.25
Ve = Tk (2.25)
rather than at the phase velocity v = @/ k = ¢/n. The relationship between vy
and v is: v d
n
g =v{l—=—1. 2.26
e =Y ( n dk) (2.26)

The derivation of this result is left as an exercise to the reader. (See Exer-
cise 2.7.) We will see in Section 2.3 that dr/dk is positive in most materials
at optical frequencies. This then implies that vg is always less than v, and
if we were to try to transmit a signal in a spectral region where v > ¢, we
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if there is just a single resonance. This is modified to

e? fi

Xa = >
€omo =5 (wj—wz—iij)

) (2.33)

if there are multiple resonances (cf. eqn 2.24).
We can combine eqns 2.29 and 2.30 with eqns 2.11 and 2.13 by writing

P
P = Negxa (8 + ?) = (& — Dep€ . (2.34)
0

We put all this together to find that:

&—1 Nya
e+2 3

(2.35)

This result is known as the Clausius—-Mossotti relationship. The relationship
works well in gases and liquids. It is also valid for those crystals in which the
Lorentz correction given in eqn 2.29 gives an accurate account of the local field
effects, namely cubic crystals.

2.2.5 The Kramers-Kronig relationships

The discussion of the dipole oscillator shows that the refractive index and the
absorption coefficient are not independent parameters but are related to each
other. This is a consequence of the fact that they are derived from the real and
imaginary parts of a single parameter, namely the complex refractive index. If
we invoke the law of causality (that an effect may not precede its cause) and
apply complex number analysis, we can derive general relationships between
the real and imaginary parts of the refractive index. These are known as the
Kramers—Kronig relationships and may be stated as foltows:

o0 /
n@) =1+ 1P / LGN (2.36)
T o @ — W
1 n) —1
k(@) = —— P ] MO =L o, (2.37)
T Jo o —@

where P indicates that we take the principal part of the integral.

The Kramers—Kronig relationships allow us to calculate » from «, and vice
versa. This can be very useful in practice, because it would allow us, for
example, to measure the frequency dependence of the optical absorption and
then calculate the dispersion without needing to make a separate measurement
of n.

2.3 Dispersion

Figure 2.9 plots the refractive index data from Fig. 2.7 in more detail. The data
show that the refractive index increases with frequency in the near infrared
and visible spectral regions. We have seen in Section 2.2.3 that this dispersion
originates mainly from the interband absorption in the ultraviolet. At visible
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frequencies the absorption from these transitions is negligible and the glass
is transparent. However, the ultraviolet absorption still affects the refractive
index through the extreme wings of the Lorentzian line. In the near infrared,
the dispersion is also affected by the high frequency wings of the vibrational
absorption at lower frequency.

A material in which the refractive index increases with frequency is said to
have normal dispersion, while one in which the contrary occurs is said to have
anomalous dispersion. A number of empirical formulae to describe the normal
dispersion of glasses have been developed over the years. (See Exercise 2.12.)

The dispersion of the refractive index of glasses such as silica can be used
to separate different wavelengths of light with a prism, as shown in Fig. 2.10.
The blue light is refracted more because of the higher index of refraction, and
is therefore deviated through a larger angle by the prism. (See Exercise 2.13.)
This effect is used in prism spectrometers.

One of the effects of dispersion is that light of different frequencies takes a
different amount of time to propagate through a material. (See Exercise 1.11,
for example.) A pulse of light of duration #, must necessarily contain a spread
of frequencies given approximately by

1

Av ~ —

2
. (2.38)

in order to satisfy the ‘uncertainty principle’ AvAt ~ 1. Dispersion will there-
fore cause the pulse to broaden in time as it propagates through the medium.
This can become a serious problem when attempting to transmit very short
pulses through a long length of an optical material, for example in a high speed
optical fibre telecommunications system.
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Fig. 2.9 Refractive index of SiO; glass in the
near infrared, visible and ultraviolet spectral
regions. After [1].

The use of the words ‘normal’ and ‘anoma-
lous’ is somewhat misleading here. The
dipole oscillator model shows us that all
materials have anomalous dispersion at some
frequencies. The phraseology was adopted
before measurements of the refractive index
had been made over a wide frequency range
and the origin of dispersion had been prop-
erly understood.

blue

Fig. 2.10 Separation of white light into dif-
ferent colours by dispersion in a glass prism.
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Equation 2.40 should be contrasted with the
usunal scalar relationship between P and €
namely (cf. eqn A.1):

P=¢yx€,

which only applies to isotropic materials.

We mentioned in Section 2.2.3 that a pulse of light travels with the group
velocity vg. The important parameter for pulse spreading due to dispersion is
therefore the group velocity dispersion (GVD) (see Exercise 2.14):

d*0 d*n  dn

GVD:W“;{;EO(de' (2.39)
The Lorentz model indicates that the GVD is positive below an absorption line
and negative above it. Applying this to the data in Fig. 2.9, we see negative
GVD in the infrared due to the vibrational absorption and positive GVD in the
visible due to the interband absorption in the ultraviolet. These two effects
cancel at a wavelength in the near infrared which is identified in Fig. 2.9.
This region of zero GVD occurs around 1.3 pm in silica optical fibres. Short
pulses can be transmitted down the fibre with negligible temporal broadening
at this wavelength, and so it is one of the preferred wavelengths for optical
fibre communication systems.

2.4 Optical anisotropy: birefringence

The atoms in a solid are locked into a crystalline lattice with well defined axes.
In general, we cannot assume that the optical properties along the different
crystalline axes are equivalent. For example, the separation of the atoms might
not be the same in all directions. This would lead to different vibrational
frequencies, and hence a change in the refractive index between the relevant
directions. This optical anisotropy contrasts with gases and liquids which are
isotropic because the atoms have no preferred directions in the absence of
external perturbations such as applied magnetic or electric fields.

Optical anisotropy gives rise to the phenomenon of birefringence. We can
describe the properties of a birefringent crystal by generalizing the relationship
between the polarization and the applied electric field. If the electric field is
applied along an arbitrary direction relative to the crystalline axes, we must
write a tensor equation to relate P to €:

P=¢cyx€ (2.40)

where x represents the susceptibility tensor. Written explicitly in terms of the
components, we have:

Py Xi1 X12  X13 &y
Py | =e | X2t X2 X23 gy |. (2.41)
P, X31  X32 X33 £,

We can simplify this by choosing the cartesian coordinates x, y, and z to
correspond to the principal crystalline axes. In this case, the off-diagonal com-
ponents are zero, and the susceptibility tensor takes the form:

xu 0 0
X = 0 x» O . (2.42)
0 0 X

The relationships between the components are determined by the crystal sym-
metry.
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